If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-18=4x
We move all terms to the left:
8x^2-18-(4x)=0
a = 8; b = -4; c = -18;
Δ = b2-4ac
Δ = -42-4·8·(-18)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{37}}{2*8}=\frac{4-4\sqrt{37}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{37}}{2*8}=\frac{4+4\sqrt{37}}{16} $
| (t+4)(-2)=18 | | 4×(x/4)=(12/18)×4 | | (x+4/2)+3(1+2x/4)=0 | | -1(b+11)=-6 | | (7a-3/6)-(2a-3/4)=5/4 | | 3(d-2)=24 | | -24+20=b | | -9+3x=4x-11 | | 0.2(2a-1)-0.5(3a-1)=0.4 | | 58-6s=-16 | | 5x+17(2+3x)=16(1+4x)= | | -2x+6=-6+x | | 3x+5=30-1/2x | | -7f+2+9=-28 | | 7+4x=2x+79 | | 29+10x=529 | | 4k+8+6=-21 | | 2v+8v=15 | | 0.05x+0.25x-0.2=x-0.9 | | 5c-7-6=17 | | 9x+3x=6x+42 | | -5x-2x=19 | | 49=20+b | | -5d+4d=16 | | 5x+10+x=46 | | -7h-5-3=33 | | 1/2x^2-√11x+1=0 | | 49=10(2)+b | | -6n-3n=-29 | | 2z-8-7=-17 | | 3x-9=5+9 | | 3(a+1)=9(a-4) |